skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Helms, Phillip"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Tensor contractions are ubiquitous in computational chemistry andphysics, where tensors generally represent states or operators andcontractions express the algebra of these quantities. In this context,the states and operators often preserve physical conservation laws,which are manifested as group symmetries in the tensors. These groupsymmetries imply that each tensor has block sparsity and can be storedin a reduced form. For nontrivial contractions, the memory footprint andcost are lowered, respectively, by a linear and a quadratic factor inthe number of symmetry sectors. State-of-the-art tensor contractionsoftware libraries exploit this opportunity by iterating over blocks orusing general block-sparse tensor representations. Both approachesentail overhead in performance and code complexity. With intuition aidedby tensor diagrams, we present a technique, irreducible representationalignment, which enables efficient handling of Abelian group symmetriesvia only dense tensors, by using contraction-specific reduced forms.This technique yields a general algorithm for arbitrary group symmetriccontractions, which we implement in Python and apply to a variety ofrepresentative contractions from quantum chemistry and tensor networkmethods. As a consequence of relying on only dense tensor contractions,we can easily make use of efficient batched matrix multiplication viaIntel’s MKL and distributed tensor contraction via the Cyclops library,achieving good efficiency and parallel scalability on up to 4096 KnightsLanding cores of a supercomputer. 
    more » « less
  2. Abstract Due to intense interest in the potential applications of quantum computing, it is critical to understand the basis for potential exponential quantum advantage in quantum chemistry. Here we gather the evidence for this case in the most common task in quantum chemistry, namely, ground-state energy estimation, for generic chemical problems where heuristic quantum state preparation might be assumed to be efficient. The availability of exponential quantum advantage then centers on whether features of the physical problem that enable efficient heuristic quantum state preparation also enable efficient solution by classical heuristics. Through numerical studies of quantum state preparation and empirical complexity analysis (including the error scaling) of classical heuristics, in both ab initio and model Hamiltonian settings, we conclude that evidence for such an exponential advantage across chemical space has yet to be found. While quantum computers may still prove useful for ground-state quantum chemistry through polynomial speedups, it may be prudent to assume exponential speedups are not generically available for this problem. 
    more » « less